THE NONEXISTENCE OF EXPANSIVE HOMEOMORPHISMS OF A CLASS OF CONTINUA WHICH CONTAINS ALL DECOMPOSABLE CIRCLE-LIKE CONTINUA

HISAO KATO

ABSTRACT. A homeomorphism $f: X \to X$ of a compactum X with metric d is expansive if there is c>0 such that if $x,y\in X$ and $x\neq y$, then there is an integer $n \in \mathbf{Z}$ such that $d(f^n(x), f^n(y)) > c$. It is well-known that padic solenoids S_p $(p \geq 2)$ admit expansive homeomorphisms, each S_p is an indecomposable continuum, and S_p cannot be embedded into the plane. In case of plane continua, the following interesting problem remains open: For each $1 \leq n \leq 3$, does there exist a plane continuum X so that X admits an expansive homeomorphism and X separates the plane into n components? For the case n=2, the typical plane continua are circle-like continua, and every decomposable circle-like continuum can be embedded into the plane. Naturally, one may ask the following question: Does there exist a decomposable circle-like continuum admitting expansive homeomorphisms? In this paper, we prove that a class of continua, which contains all chainable continua, some continuous curves of pseudo-arcs constructed by W. Lewis and all decomposable circle-like continua, admits no expansive homeomorphisms. In particular, any decomposable circle-like continuum admits no expansive homeomorphism. Also, we show that if $f: X \to X$ is an expansive homeomorphism of a circlelike continuum X, then f is itself weakly chaotic in the sense of Devaney.

1. Introduction

All spaces considered in this paper are assumed to be separable metric spaces. Maps are continuous functions. By a compactum we mean a nonempty compact metric space. A continuum is a connected compactum. A homeomorphism $f: X \to X$ of a compactum X with metric d is called expansive ([20], [1] and [2]) if there is c > 0 such that for any $x, y \in X$ with $x \neq y$, there is an integer $n \in \mathbf{Z}$ such that

$$d(f^n(x), f^n(y)) > c.$$

A homeomorphism $f: X \to X$ of a compactum X is *continuum-wise expansive* [8] if there is c > 0 such that if A is a nondegenerate subcontinuum of X, then there is an integer $n \in \mathbf{Z}$ such that

$$\operatorname{diam} f^n(A) > c,$$

where diam $B = \sup\{d(x,y)|x,y \in B\}$ for a set B. Such a positive number c is called an expansive constant for f. Note that each expansive homeomorphism

Received by the editors October 9, 1995 and, in revised form, February 6, 1996.

¹⁹⁹¹ Mathematics Subject Classification. Primary 54H20, 54F50; Secondary 54E50, 54B20. Key words and phrases. Expansive homeomorphism, decomposable, chainable, circle-like, the pseudo-arc, pattern, hyperspace.

is continuum-wise expansive, but the converse assertion is not true. There are many continuum-wise expansive homeomorphisms which are not expansive (e.g., see [8], [9] and [11]). In fact, there are many decomposable circle-like continua admitting continuum-wise expansive homeomorphisms. By the definitions, we see that expansiveness and continuum-wise expansiveness do not depend on the choice of the metric d of X. These notions have been extensively studied in the area of topological dynamics, ergodic theory and continuum theory (e.g., see [1], [2], [7]–[12], [20], and [21]).

Let $f: X \to X$ be a homeomorphism of a compactum X. A (nonempty) closed subset M of X is a minimal set of f if M is f-invariant, i.e., f(M) = M, and for any $x \in M$, the orbit $O(f) = \{f^n(x) | n \in \mathbf{Z}\}$ is dense in M. Note that every homeomorphism of a compactum has a minimal set. For a point $x \in X$, the ω -limit set $\omega f(x)$ of x is the set

$$\omega f(x) (= \omega(x)) = \{ y \in X | \text{ there is a sequence } n_1 < n_2 < \dots \}$$
 of natural numbers such that $\lim_{i \to \infty} f^{n_i}(x) = y \}.$

Similarly, the α -limit set $\alpha f(x) (= \alpha(x))$ of x is the set $\omega f^{-1}(x)$.

Let X be a compactum. Let 2^X be the set of all nonempty closed sets of X and C(X) the set of all nonempty subcontinua of X. Suppose that U_1, \ldots, U_n are nonempty open sets of X. Put

$$\langle U_1, \dots, U_n \rangle = \{ A \in 2^X | A \cap U_i \neq \phi, A \subset \bigcup_{i=1}^n U_i \}.$$

Then

$$\beta = \{ \langle U_1, U_2, \dots, U_n \rangle | n \ge 1 \text{ and}$$

$$U_i (i \le n) \text{ are nonempty open sets of } X \}$$

is a base of 2^X , and it is called the *Vietoris topology*. Then 2^X and C(X) are compacta. The spaces 2^X and C(X) are called the *hyperspaces* of X. For a map $f: X \to X$, we define a map $f_*: 2^X \to 2^X$ by $f_*(A) = f(A) (= \{f(a) | a \in A\})$ for $A \in 2^X$. Also, put $C(f) = f_* | C(X) : C(X) \to C(X)$. Then X is identified with the closed invariant subset of singletons, i.e., degenerate subcontinua.

For the map $C(f): C(X) \to C(X)$, we shall deal with $\omega(E) = \omega C(f)(E)$ and $\alpha(E) = \omega C(f)^{-1}(E)$ for $E \in C(X)$.

For a homeomorphism $f: X \to X$, if $Z \subset X$ is a closed invariant subset for X, then Z is *isolated* if for some neighborhood U of Z in X any orbit lying entirely in U is in fact in Z, i.e., $Z = \bigcap_{-\infty}^{\infty} f^n(U)$. Then f is expansive (resp. continuum-wise expansive) if and only if X is isolated in 2^X for f_* (resp. in C(X) for C(f)) (see [1]).

Let **A** and **B** be closed C(f)-invariant sets in C(X). Then we define the orderings $*<,<_*$, and $*<_*$ as follows: Define $\mathbf{A}_*<\mathbf{B}$ (resp. $\mathbf{A}<_*\mathbf{B}$) iff for any $A\in\mathbf{A}$ there is $B\in\mathbf{B}$ (resp. for any $B\in\mathbf{B}$ there is $A\in\mathbf{A}$) such that $A\subset B$. Also, define $\mathbf{A}_*<_*\mathbf{B}$ iff $\mathbf{A}_*<\mathbf{B}$ and $\mathbf{A}<_*\mathbf{B}$. Example: for $E_0,E_1\in C(X),\,E_0\subset E_1$ implies $\omega(E_0)_*<_*\omega(E_1)$ and $\alpha(E_0)_*<_*\alpha(E_1)$.

For a homeomorphism $f: X \to X$, we define sets of *stable* and *unstable* nondegenerate subcontinua of X as follows (see [9]):

 $\mathbf{V}^s = \{A | A \text{ is a nondegenerate subcontinuum of } X \text{ such that }$

$$\lim_{n\to\infty} \operatorname{diam} f^n(A) = 0\},\,$$

 $\mathbf{V}^u = \{A | A \text{ is a nondegenerate subcontinuum of } X \text{ such that }$

$$\lim_{n\to\infty} \operatorname{diam} f^{-n}(A) = 0\}.$$

For each $0 < \delta < \epsilon$, put

$$\mathbf{V}^s(\delta;\epsilon) = \{A \in C(X) | \operatorname{diam} A \geq \delta, \text{ and diam } f^n(A) \leq \epsilon \text{ for each } n \geq 0\},$$

$$\mathbf{V}^{u}(\delta;\epsilon) = \{A \in C(X) | \operatorname{diam} A \ge \delta, \text{ and } \operatorname{diam} f^{-n}(A) \le \epsilon \text{ for each } n \ge 0\}.$$

Then $\mathbf{V}^{\sigma}(\delta; \epsilon)$ ($\sigma = u, s$) is closed in C(X). Note that if $f: X \to X$ is a continuumwise expansive homeomorphism with an expansive constant c > 0, then for each $0 < \delta < \epsilon < c$ we have $\mathbf{V}^{\sigma}(\delta; \epsilon) \subset \mathbf{V}^{\sigma}$, and \mathbf{V}^{σ} is an F_{σ} -set in C(X).

A chain $C = [C_1, C_2, \dots, C_m]$ of X is a finite collection of open sets of X satisfying the following property:

$$Cl(C_i) \cap Cl(C_j) \neq \phi$$
 if and only if $|i - j| \leq 1$.

Each C_i is called a link of the chain C. Moreover, if for each $i=1,\ldots,m$, $\operatorname{diam}(C_i)<\epsilon$, i.e., $\operatorname{mesh}(C)<\epsilon$, then we say that the chain C is an ϵ -chain. For a chain $C=[C_1,C_2,\ldots,C_m]$ and two points $p,q\in X$, if $p\in C_1$ and $q\in C_m$, we say that $C=[C_1,C_2,\ldots,C_m]$ is a chain from p to q. A continuum X is chainable if for any $\epsilon>0$ there is an ϵ -chain covering of X.

If n is a natural number, let $I(n) = \{1, 2, \ldots, n\}$. A surjective function $f: I(m) \to I(n)$ is called a pattern provided that $|f(i+1) - f(i)| \le 1$ for each $i = 1, \ldots, m-1$. Let $C = [C_1, C_2, \ldots, C_n]$ and $D = [D_1, D_2, \ldots, D_m]$ be chain coverings of X and let $f: I(m) \to I(n)$ be a pattern. We say that D follows the pattern f in C provided that $D_i \subset C_{f(i)}$ for each $i \in I(m)$.

Let \mathcal{P} be a family of compact polyhedra. A continuum X is called a \mathcal{P} -like continuum if for any $\epsilon > 0$ there is an onto map $g: X \to P$ such that $P \in \mathcal{P}$ and diam $g^{-1}(y) < \epsilon$ for each $y \in P$. Note that X is chainable if and only if X is arc-like. A circular chain differs from a chain in that the first and last links intersect. Then a continuum X is circle-like if and only if for any $\epsilon > 0$, there is an ϵ -circular chain covering of X.

Concerning expansive homeomorphisms, we have the following general problem:

Problem 1.1. What kinds of (plane) continua admit expansive homeomorphisms?

Note that p-adic solenoids S_p ($p \geq 2$) are indecomposable circle-like continua admitting expansive homeomorphisms (see [21]), and they cannot be embedded into the plane R^2 . On the other hand, each decomposable circle-like continuum X can be embedded into R^2 , and $R^2 - X$ has at most 2 components. It is known that for each $n \geq 4$ there is a plane continuum X which is called a Lake of Wada, such that X admits an expansive homeomorphism and $R^2 - X$ has n components. It is not known whether there exists a plane continuum X such that X admits an expansive homeomorphism and X separates the plane R^2 into n components ($n \leq 3$), or not. For the case n = 2, the typical continua are circle-like continua.

In [7, 8], we proved that if X is a tree-like continuum admitting a continuum-wise expansive homeomorphism, it must contain an indecomposable subcontinuum.

Also, in [10], we proved that chainable continua admit no expansive homeomorphisms. Naturally, we are interested in the following problem:

Problem 1.2. Does there exist a decomposable circle-like continuum admitting an expansive homeomorphism?

In this paper, we prove that some kinds of continua, including all chainable continua, some continuous curves of pseudo-arcs constructed by W. Lewis and all decomposable circle-like continua, admit no expansive homeomorphisms. In particular, any decomposable circle-like continuum admits no expansive homeomorphism. For example, we know that a solenoid of pseudo-arcs and the circle of pseudo-arcs admit no expansive homeomorphisms. Also, we show that if $f: X \to X$ is an expansive homeomorphism of a circle-like continuum X, then f is itself weakly chaotic in the sense of Devaney.

2. Preliminaries

A continuum X is decomposable if there are two proper subcontinua A and B of X such that $A \cup B = X$. A continuum X is indecomposable if it is not decomposable. A continuum X is hereditarily indecomposable if each subcontinuum of X is indecomposable. The pseudo-arc P is characterized [4] as a (nondegenerate) hereditarily indecomposable chainable continuum. The pseudo-arc has many remarkable properties in topology and chaotic dynamics (e.g., see [3]–[6] and [13]–[16]). For example, the pseudo-arc P is homogeneous [3], each onto map of the pseudo-arc P is a near homeomorphism [15], and the pseudo-arc P admits chaotic homeomorphisms in the sense of Devaney (see [13]). Also, there is an onto map from the pseudo-arc P to each chainable continuum (see [6] and [14]).

From the proof of [8, Proposition 2.3] we have

Lemma 2.1. Let $f: X \to X$ be a continuum-wise expansive homeomorphism of a compactum X with an expansive constant c > 0, and let $0 < \epsilon < c/2$. Then there is a positive number $\delta < \epsilon$ such that if A is a subcontinuum of X with diam $A \le \delta$ and diam $f^m(A) \ge \epsilon$ for some integer $m \ge 0$ (resp. m < 0), then for each $n \ge m$ and for each $n \in S$ and diam $n \in S$ consider $n \in S$ for $n \in S$ consider $n \in S$ consider

Corollary 2.2. Let $f: X \to X, c, \epsilon, \delta$ be as in Lemma 2.1.

- (a) For every nondegenerate subcontinuum A of X with diam $A \leq \delta$, exactly one of the two following assertions holds:
 - 1. For all $n \geq 0$, diam $f^n(A) \leq \epsilon$, in which case $A \in \mathbf{V}^s$ and $\omega(A) \subset X \subset C(X)$.
 - 2. For $n \geq 0$ sufficiently large, diam $f^n(A) \geq \delta$.
- (b) For every subcontinuum A, either $\omega(A) \subset X \subset C(X)$ or diam $E \geq \delta$ for all $E \in \omega(A)$.

For $n < 0, \mathbf{V}^u$ and $\alpha(A)$, the similar properties are satisfied.

Lemma 2.3 ([8, Corollary 2.4]). Let $f: X \to X$ be a continuum-wise expansive homeomorphism of a compactum X with dim X > 0. Then the following are true.

1. $\mathbf{V}^u \neq \phi \text{ or } \mathbf{V}^s \neq \phi$.

2. If $\delta > 0$ is as in the above lemma, then for each $\gamma > 0$ there is a natural number $N(\gamma)$ such that if A is a subcontinuum of X with diam $A \geq \gamma$, then either diam $f^n(A) \geq \delta$ for each $n \geq N(\gamma)$ or diam $f^{-n}(A) \geq \delta$ for each $n \geq N(\gamma)$.

From the above lemma, we see that $\mathbf{V}^s \cap \mathbf{V}^u = \phi$ and moreover if $A \in \mathbf{V}^u, B \in \mathbf{V}^s$, then dim $(A \cap B) \leq 0$.

Lemma 2.4. Under the same hypothesis as in Lemma 2.3, let E_0, E_1 be nondegenerate subcontinua of X with $E_1 \in \omega(E_0)$. Then one of the following holds:

- 1. Every nondegenerate subcontinuum A_0 of E_0 with diam $A_0 < \delta$ lies in \mathbf{V}^s .
- 2. There is a subcontinuum A_1 of E_1 with diam $A_1 = \delta$ lying in \mathbf{V}^u . Moreover, if $E_0 \in \mathbf{V}^u$, then for any $x \in E_1$ there is a subcontinuum A_1 of E_1 such that diam $A_1 = \delta$ and $x \in A_1 \in \mathbf{V}^u$.

Proof. If the first condition is not true, then there is a subcontinuum B of E_0 with $0<\gamma=\dim B<\delta$ and a natural number n such that $\dim f^n(B)>\epsilon$. Choose a sequence $0=n_0< n_1<\ldots$, of natural numbers such that $n_{i+1}-n_i\geq N(\gamma)$ (see Lemma 2.3) and $\lim_{i\to\infty}f^{n_i}(E_0)=E_1$. By using Lemmas 2.1 inductively, we can construct a sequence B_0,B_1,\ldots of subcontinua with $B_0=B$, $\dim B_0=\gamma<\delta$, $B_{i+1}\subset f^{n_{i+1}-n_i}$ (B_i) , $\dim B_i=\delta$ $(i\geq 1)$, and $\dim f^{-j}(B_i)\leq \epsilon$ for each $0\leq j\leq n_i$. We may assume that $\lim_{i\to\infty}B_i=A_1$. Then $A_1\in \mathbf{V}^u$ and $A_1\subset E_1$.

Moreover, suppose that $E_0 \in \mathbf{V}^u$. For any $x \in E_1$, we choose a sequence x_0, x_1, \ldots of points such that $x_i \in f^{n_i}(E_0)$ and $\lim_{i \to \infty} x_i = x$. Choose a subcontinuum B of E_0 such that $x_0 \in B$ and diam $B = \gamma < \delta$. By Lemma 2.1, we can choose a sequence B_0, B_1, \ldots satisfying the above conditions with $x_i \in B_i$ for each i. Then $x \in A_1 \in \mathbf{V}^u$.

Corollary 2.5. Under the same hypothesis as in Lemma 2.3, let \mathbf{A} be a minimal set of C(f). Assume that there is a nondegenerate subcontinuum $A \in \mathbf{A}$.

- (a) For all $A \in \mathbf{A}$, diam $A \geq \delta$.
- (b) Exactly one of the three following conditions holds for **A**:
 - 1. For all $A \in \mathbf{A}$ and all subcontinua B of A with diam $B < \delta$, $B \in \mathbf{V}^s$.
 - 2. For all $A \in \mathbf{A}$ and all subcontinua B of A with diam $B < \delta$, $B \in \mathbf{V}^u$.
 - 3. For all $A \in \mathbf{A}$ there are subcontinua B_0, B_1 of A with diam $B_0 = \operatorname{diam} B_1 = \delta$ and $B_0 \in \mathbf{V}^s, B_1 \in \mathbf{V}^u$.
- (c) If $A \in \mathbf{A}$ and B is a nondegenerate subcontinuum of A with $B \notin \mathbf{V}^s$, then diam $E \geq \delta$ for each $E \in \omega(B)$, $\omega(B)_* <_* \mathbf{A}$, and if \mathbf{A}_0 is a minimal set in $\omega(B)$, then $\mathbf{A}_0_* <_* \mathbf{A}$ as well.

The following propositions are used in the sequel.

Proposition 2.6. Let $f: X \to X$ be a continuum-wise expansive homeomorphism of a compactum X with $\dim X > 0$. Suppose that \mathbf{B} is a C(f)-invariant set such that some element of \mathbf{B} is nondegenerate. Then there exists a minimal set $\mathbf{A}_* < \mathbf{B}$ of C(f) such that each element of \mathbf{A} is nondegenerate, and such that for each $A \in \mathbf{A}$ and each nondegenerate subcontinuum B of A either $B \in \mathbf{V}^s$ or $\mathbf{A} \subset \omega(B)$, and either $B \in \mathbf{V}^u$ or $\mathbf{A} \subset \alpha(B)$.

Proof. For pairs (A, \mathbf{A}) such that \mathbf{A} is minimal, $\mathbf{A}_* < \mathbf{B}$, $A \in \mathbf{A}$ and A is a nondegenerate subcontinuum, we consider the order by inclusion of the A's. By Corollary 2.2,(b), there exists such a pair. If $\{(A_{\alpha}, \mathbf{A}_{\alpha})\}$ is a totally ordered family,

then $B = \bigcap_{\alpha} A_{\alpha}$ is a nondegenerate subcontinuum and so either $\omega(B)$ or $\alpha(B)$ contains a minimal subset \mathbf{A} such that its elements are nondegenerate subcontinua and $\mathbf{A}_* <_* \mathbf{A}_{\alpha}$ for all α . For each α choose $B_{\alpha} \subset A_{\alpha}$ with $B_{\alpha} \in \mathbf{A}$. Then any limit point A of the net $\{B_{\alpha}\}$ is an element of \mathbf{A} contained in all the A_{α} 's. So Zorn's lemma applies to the pairs. If (\tilde{A}, \mathbf{A}) is minimal with respect to this ordering, then \mathbf{A} satisfies the conclusion. In fact, if $A \in \mathbf{A}$ and B is a nondegenerate subcontinuum of A not in \mathbf{V}^s , then $\omega(B)_* <_* \mathbf{A}$ and $\mathbf{A}_0 *_{<*} \mathbf{A}$ for any minimal subset \mathbf{A}_0 of $\omega(B)$. Then there is $A_0 \in \mathbf{A}_0$ such that $A_0 \subset \tilde{A}$, and so by minimality we see that $A_0 = \tilde{A}$ and so $\mathbf{A} = \omega(A_0) = \mathbf{A}_0 \subset \omega(B)$.

This completes the proof.

Proposition 2.7. Under the same assumption as in the above proposition, the minimal set **A** satisfies one of the following conditions:

1. If some $A_0 \in \mathbf{A}$ contains an element of \mathbf{V}^u , then for any $x \in A \in \mathbf{A}$, there is a nondegenerate subcontinuum A_x of A such that $x \in A_x \in \mathbf{V}^u$, and if A' is a nondegenerate subcontinuum of $A \in \mathbf{A}$ with $A' \notin \mathbf{V}^s$, then for each $H \in \mathbf{A}$ there is a sequence $n_1 < n_2 < \ldots$ of natural numbers such that

$$\lim_{i \to \infty} f^{n_i}(A) = \lim_{i \to \infty} f^{n_i}(A') = H.$$

2. If some $A_0 \in \mathbf{A}$ contains an element of \mathbf{V}^s , then for any $x \in A \in \mathbf{A}$, for any $x \in A \in \mathbf{A}$, there is a nondegenerate subcontinuum A_x of A such that $x \in A_x \in \mathbf{V}^s$, and if A' is a any nondegenerate subcontinuum of $A \in \mathbf{A}$ with $A' \notin \mathbf{V}^u$, then for each $H \in \mathbf{A}$ there is a sequence $n_1 < n_2 < \ldots$ of natural numbers such that

$$\lim_{i \to \infty} f^{-n_i}(A) = \lim_{i \to \infty} f^{-n_i}(A') = H.$$

Proof. We shall show the first case. Let $B \in \mathbf{V}^u$ and $B \subset A_0 \in \mathbf{A}$. By the above proposition, we see that $\mathbf{A} \subset \omega(B)$. By Lemma 2.4, we see that for any $x \in A \in \mathbf{A}$, there is $A_x \in \mathbf{V}^u$ such that $x \in A_x \subset A$. Since \mathbf{A} is closed in C(X), \mathbf{A} contains an maximal element in order by inclusion. In fact, for a Whitney map $\mu: C(X) \to [0,1]$ (see [18]), we can choose an element T of \mathbf{A} such that $\mu(T) = \max\{\mu(E) | E \in \mathbf{A}\}$. Then T is a maximal element of \mathbf{A} . Suppose that A' is a nondegenerate subcontinuum of $A \in \mathbf{A}$ with $A' \notin \mathbf{V}^s$. Let $H \in \mathbf{A}$. Since $\omega(A') \supset \mathbf{A}$ (see Proposition 2.6), $T \in \omega(A')$. Hence there is a sequence $i_1 < i_2 < \ldots$ of natural numbers such that $\lim_{k \to \infty} f^{i_k}(A') = T$. We may assume that $\{f^{i_k}(A)\}_{k=1}^{\infty}$ is convergent. Since T is maximal in \mathbf{A} , we see that $\lim_{k \to \infty} f^{i_k}(A) = T$. Since \mathbf{A} is minimal, $H \in \omega(T)$. Then we can choose a sequence $n_1 < n_2 < \ldots$ of natural numbers such that

$$\lim_{i \to \infty} f^{n_i}(A') = \lim_{i \to \infty} f^{n_i}(A) = H.$$

This completes the proof.

Let $f: X \to X$ be a continuum-wise expansive homeomorphism of a compactum X with dim X > 0. Note that every minimal set of f is 0-dimensional (see [8, Theorem 5.2]). Consider the following sets (see [12]):

- 1. $\mathcal{I}(f) = \{ A \in 2^X | A \text{ is } f\text{-invariant} \}.$
- 2. $\mathcal{I}^{+}(f) = \{ A \in \mathcal{I}(f) | \dim A > 0 \}.$
- 3. $\mathcal{D}(f)$ is the set of all minimal elements of $\mathcal{I}^+(f)$ in the order by inclusion.

Note that $\mathcal{D}(f) \neq \phi$ (see [12, Proposition 2.4]) and if $Y \in \mathcal{D}(f)$, then $f_Y = f|Y: Y \to Y$ is weakly chaotic in the sense of Devaney, i.e., f_Y has sensitive dependence on initial conditions, f_Y is topologically transitive and the union of all minimal sets of f_Y is dense in Y ([12, Theorem 2.7]), i.e., the min-center of f_Y is Y (see [1, p. 70]).

Proposition 2.8. Let $f: X \to X$ be a continuum-wise expansive homeomorphism of a compactum X with $\dim X > 0$. If $Y \in \mathcal{D}(f)$, then there is a minimal set \mathbf{A} of C(f) satisfying one of the conditions (1) and (2) as in Proposition 2.7 and $| A| A \in \mathbf{A} = Y$.

Proof. Consider the map $f|Y:Y\to Y$. Then there is a minimal set **A** of C(f|Y) as in Proposition 2.7. Put $Y'=\bigcup\{A|A\in \mathbf{A}\}$. Then Y' is f-invariant and $\dim Y'>0$. Hence Y=Y'.

The following lemma follows from [3, Theorem 6] (see also [15, Lemmas 2 and 1.1]).

Lemma 2.9. Let P be the pseudo-arc. Let $C = [C_1, C_2, \ldots, C_n]$ be a chain covering of P and $f: I(m) \to I(n)$ a pattern with f(1) = 1. Let $p \in C_1$. Then there is a chain covering $D = [D_1, D_2, \ldots, D_m]$ such that D refines the chain C, $p \in D_1$ and D follows the pattern f in C.

The following lemma is a simple modification of the uniformization theorem of Mioduszewski (see [17] and [19]). For completeness, we give the proof.

Lemma 2.10. Let I = [0,1] be the unit interval. Suppose that $f, g : I \to I$ are piecewise linear onto maps. If f(0) = g(0) = 0, then there are onto maps $a, b : I \to I$ such that $f \cdot a = g \cdot b$ and a(0) = b(0) = 0.

Proof. Let $\psi: I^2 \to R$ be the map defined by $\psi(x,y) = f(x) - g(y)$. Note that I^2 is unicoherent (i.e., if A and B are coutinua with $A \cup B = I^2$, then $A \cap B$ is connected). In [17], Mioduszewski proved that there is a component K of $\psi^{-1}(0)$ such that K meets all four sides of I^2 (see also [19]). Note that each component of $\psi^{-1}(0)$ is a polyhedron. Let L be a component of $\psi^{-1}(0)$ containing the point $p = (0,0) \in I^2$. Suppose, on the contrary, that $L \cap (I \times \{1\} \cup \{1\} \times I) = \phi$. Then there is an arc $\alpha: I \to I^2$ such that $\alpha(0) = (x_1,0) \in I \times \{0\}$, $\alpha(1) = (0,y_1) \in \{0\} \times I$, and $\psi^{-1}(0) \cap \alpha(I) = \phi$. Note that $g(0) = 0 < f(x_1)$ and $g(y_1) > f(0)$. Hence we can see that there is a point $q = (q_1,q_2) \in \alpha(I)$ such that $f(q_1) = g(q_2)$, which implies that $q \in \phi^{-1}(0)$. This is a contradiction. Hence K contains L. By using this fact, we can choose desired maps $a,b:I \to I$.

3. The nonexistence of expansive homeomorphisms of certain continua

The following is the main theorem in this paper.

Theorem 3.1. Let $f: X \to X$ be a homeomorphism of a compactum X. If there is a minimal set \mathbf{A} of C(f) such that some element A of \mathbf{A} is a (nondegenerate) chainable continuum, then f is not expansive.

Proof. Suppose, on the contrary, that f is expansive. Replace **A** if necessary by an $\mathbf{A}_0 \ll \mathbf{A}$ which satisfies the condition (1) of Proposition 2.7. Since every subcontinuum of a chainable continuum is also chainable, we may assume that **A** satisfies the conditions of Proposition 2.7,(1).

Let c > 0 be an expansive constant for f and $c/2 > \epsilon > 0$. Now, we shall prove the following property

(3.1.1)

For any $0 < \tau < \epsilon$ there are two points x, y of X and a natural number $n(\tau)$

such that
$$d(x,y) \leq \tau$$
, $d(f^{n(\tau)}(x), f^{n(\tau)}(y)) \leq \tau$, and $\epsilon \leq \sup\{d(f^j(x), f^j(y)) | 0 \leq j \leq n(\tau)\} \leq 2\epsilon$.

Let $A \in \mathbf{A}$ be a chainable continuum. Since A is chainable, there is a $\tau/4$ -chain $C = [C_1, C_2, \dots, C_r]$ in X which is an open covering of A. We can choose a subcontinuum B_1 of A such that $B_1 \in \mathbf{V}^u(\tau; \epsilon)$ (see (1) of Proposition 2.7), and we may assume that diam $(B_1) = \tau$. Since $B_1 \in \mathbf{V}^u$ and f is expansive, we can choose a natural number N_1 such that if $x, y \in B_1$ and $d(x, y) \ge \tau/4$, then

$$\sup\{d(f^{i}(x), f^{i}(y)) | 0 \le i \le N_{1}\} > 2\epsilon.$$

Choose a subcontinuum B_2 of B_1 such that diam $B_2 = \tau/2$. By the assumption, there is a sequence $n_1 < n_2 < \ldots$ of natural numbers such that $\lim_{i \to \infty} f^{n_i}(B_2) = \lim_{i \to \infty} f^{n_i}(A) = A$ (see Proposition 2.7). Hence, we can choose a natural number $N > N_1$ such that $f^N(B_1), f^N(B_2) \in \langle C_1, \ldots, C_r \rangle$. Choose a point $e \in B_2$ such that $f^N(e) \in C_1$. Since B_1, B_2 are chainable, by [6] or [14] there are onto maps $\psi_k : P \to B_k$ (k = 1, 2) from the pseudo-arc P onto B_k . Let $p \in P$. Since P is homogeneous [3], we may assume that $\psi_k(p) = e$ for each k = 1, 2. Choose a chain covering $D = [D_1, \ldots, D_s]$ of P such that its mesh is sufficiently small. We may assume that if $x, y \in D_i \cup D_{i+1}$, then

(3.1.2)
$$\sup\{d(f^{j}(\psi_{k}(x)), f^{j}(\psi_{k}(y))) | 0 \le j \le N\} < \epsilon/2$$

for each k=1,2. We may assume that $p\in D_1$ (see the proof of [3, Theorem 13]). Also we may assume that D is a refinement of the chains $C^k=(f^N\cdot\psi_k)^{-1}(C)$ (k=1,2). Let $f_k:I(s)\to I(r)$ (k=1,2) be patterns such that D follows the patterns f_k in C^k (k=1,2). Then the patterns f_k (k=1,2) induce maps $f_k:N(D)=N(\{D_1,\ldots,D_s\})\to N(C)=N(\{C_1,\ldots,C_r\})$ which are natural simplicial maps from the nerve N(D) of D to N(C) of C with $f_k(D_j)=C_{f_k(j)}$ for each j.

Since the above nerves are arcs, we can consider that f_k is a map from the unit interval I onto I such that $f_k(0) = 0$ (k = 1, 2). By Lemma 2.10, there are onto maps $g_k : I \to I$ such that $f_1 \cdot g_1 = f_2 \cdot g_2$ and $g_k(0) = 0$.

By using g_k (k = 1, 2), we obtain patterns $g_k : I(l) \to I(s)$ satisfying the inequality $|f_1g_1(j) - f_2g_2(j)| \le 1$ for each j = 1, 2, ..., l. By Lemma 2.9, we can choose chain coverings $E = [E_1, E_2, ..., E_l]$ and $F = [F_1, F_2, ..., F_l]$ of P such that E follows the pattern g_1 in D and F follows the pattern g_2 in D. We may assume that $p \in E_1 \cap F_1$.

Choose points $a_1, \ldots, a_l, b_1, \ldots, b_l$ of P beginning with $p = a_1 = b_1$ and such that $a_j \in E_j, b_j \in F_j$. Note that

$$d(f^{N}(\psi_{1}(a_{j})), f^{N}(\psi_{2}(b_{j}))) \leq \tau.$$

For each $i = 1, 2, \ldots, l$, put

$$r_i = \sup\{d(f^j(\psi_1(a_i)), f^j(\psi_2(b_i))) | 0 \le j \le N\}.$$

Since the chain cover D is sufficiently small (see (3.1.2)), we may assume that

$$|r_i - r_{i+1}| < \epsilon.$$

Note that $r_1 = 0$. Since ψ_1 is surjective, there is a point a_u $(u \le l)$ such that $d(\psi_1(a_u), B_2) \ge \tau/4$, and hence $d(\psi_1(a_u), \psi_2(b_u)) \ge \tau/4$. Thus $r_u > 2\epsilon$. Then we can choose $i \le u$ such that $\epsilon \le r_i \le 2\epsilon$. The two points a_i, b_i satisfy the condition (3.1.1).

Let $\{\epsilon_i\}_{i=1}^{\infty}$ be a sequence of positive numbers such that $\lim_{i\to\infty} \epsilon_i = 0$. By the condition (3.1.1), there are two points $x_i, y_i \in X$ and a natural number n(i) such that

$$d(x_i, y_i) < \epsilon_i, \qquad d(f^{n(i)}(x_i), f^{n(i)}(y_i)) < \epsilon_i$$

and

$$\epsilon \le \sup\{d(f^j(x_i), f^j(y_i)) | 0 \le j \le n(i)\} \le 2\epsilon.$$

Choose 0 < m(i) < n(i) such that $d(f^{m(i)}(x_i), f^{m(i)}(y_i)) \ge \epsilon$. We may assume that $\{f^{m(i)}(x_i)\}$ and $\{f^{m(i)}(y_i)\}$ are convergent to x_0 and y_0 , respectively. Note that

$$\lim_{i \to \infty} (n(i) - m(i)) = \infty = \lim_{i \to \infty} m(i).$$

Then $x_0 \neq y_0$ and $d(f^n(x_0), f^n(y_0)) \leq 2\epsilon < c$ for all $n \in \mathbb{Z}$. This is a contradiction.

Corollary 3.2. If X is a decomposable circle-like continuum, then X admits no expansive homeomorphism.

Proof. Suppose, on the contrary, that there is an expansive homeomorphism $f: X \to X$. Since X is decomposable, there are two proper nonempty subcontinua A, B of X such that $A \cup B = X$. Since X is circle-like, A and B are chainable. Note that $A \cap B$ has at most 2 components [5, Theorem 5]. By [11, Theorem 3.6], there is a σ -chaotic continuum C of f. We may assume that $\sigma = u$. Then C is indecomposable (see [11, Corollary 5.3]) and is a proper subcontinuum of X. Note that $f^n(C) \cap A$ and $f^n(C) \cap B$ have at most 2 components. Since $f^n(C)$ is indecomposable, we can easily see that for each $n = 0, 1, \ldots, f^n(C) \subset A$ or $f^n(C) \subset B$. Hence we see that there is a minimal set A of C(f) satisfying the condition of Theorem 3.1. By Theorem 3.1, f is not expansive.

Corollary 3.3. Let $f: X \to X$ be a homeomorphism of a compactum X. Suppose that there are maps $\psi: X \to Y$ and $g: Y \to Y$ such that $\psi \cdot f = g \cdot \psi$ and for each $y \in Y$ $\psi^{-1}(y)$ is a (nondegenerate) chainable continuum. Then f is not expansive.

Proof. Let $y_0 \in Y$. By Corollary 2.2, we may assume each element of $\omega(\psi^{-1}(y_0))$ is nondegenerate. Since $\psi \cdot f = g \cdot \psi$ and the collection $\{\psi^{-1}(y) \mid y \in Y\}$ is an upper semi-continuous decomposition of X, each element of $\omega(\psi^{-1}(y_0))$ is contained in some $\psi^{-1}(y)$, and hence it is chainable.

Take a minimal set **A** of $\omega(\psi^{-1}(y_0))$. Then each element of **A** is a chainable continuum. By Theorem 3.1, f is not expansive.

Corollary 3.4. Let $f: X \to X$ be an expansive homeomorphism of a circle-like continuum X, and let $\delta > 0$ be a positive number as in Lemma 2.1. Then one of the following conditions is satisfied:

- (i) If $A \in C(X)$ and $0 < \text{diam } A < \delta$, then $A \in \mathbf{V}^u$, and if B is a nondegenerate subcontinuum of X, then $X \in \omega(B)$.
- (ii) If $A \in C(X)$ and $0 < \operatorname{diam} A < \delta$, then $A \in \mathbf{V}^s$, and if B is a nondegenerate subcontinuum of X, then $X \in \alpha(B)$.

Proof. By Lemma 2.3, we may assume that $\mathbf{V}^u \neq \phi$. Let $A \in \mathbf{V}^u$. Suppose, on the contrary, that $\omega(A)$ does not contain X. Then we obtain a minimal set $\mathbf{A} \subset \omega(A)$ of C(f) satisfying the condition of Theorem 3.1. Hence f is not expansive, which is a contradiction. Since $X \in \omega(A)$, by Lemma 2.4 we see that for each $x \in X$ there is $x \in A_x \in \mathbf{V}^u(\delta;\epsilon)$, where δ,ϵ are as in Lemma 2.1. Suppose, on the contrary, that $\mathbf{V}^s \neq \phi$. Then we see also that for each $x \in X$ there is $x \in B_x \in \mathbf{V}^s(\delta; \epsilon)$. Since f is expansive, we know that $A_x \cap B_x = \{x\}$. Choose A_x and two points $y, z \in A_x$ such that x, y and z are different. Then there are three subcontinua B_x, B_y, B_z such that their diameters are small and B_x, B_y and B_z are mutually disjoint. Then $T = A_x \cup B_x \cup B_y \cup B_z$ is a triod. Since X is a triodic, this is a contradiction. Hence $\mathbf{V}^s = \phi$. Let A be a nondegenerate subcontinuum of X with diam $A = \gamma < \delta$. Suppose, on the contrary, that $\sup\{\operatorname{diam} f^{-n}(A)|n\geq 0\}\geq \epsilon$. By using Lemmas 2.1 and 2.3 inductively, we have a sequence $n_1 < n_2 < \dots$ of natural numbers and a sequence B_1, B_2, \ldots of subcontinua such that $B_i \subset f^{-n_i}(A)$, diam $B_i = \delta$ and diam $f^j(B_i) \leq \epsilon$ for each $0 \leq j \leq n_i$. We may assume that $\lim_{i \to \infty} B_i = B \in \mathbf{V}^s$. This is a contradiction. Hence we see that $A \in \mathbf{V}^u$. Clearly, if B is a nondegenerate subcontinuum, then $X \in \omega(B)$, because $B \notin \mathbf{V}^s$.

Corollary 3.5. If $f: X \to X$ is an expansive homeomorphism of a circle-like continuum X, then f is itself weakly chaotic in the sense of Devaney.

Proof. Consider the set $\mathcal{D}(f) \neq \phi$. Let $Y \in \mathcal{D}(f)$. Since dim Y > 0, Y contains a nondegenerate subcontinuum. By Corollary 3.4, we see that Y = X. Hence f is weakly chaotic in the sense of Devaney.

Remark. In [16], Lewis showed that, for every 1-dimensional continuum M there exists a 1-dimensional continuum \hat{M} such that \hat{M} has a continuous decomposition $\psi:\hat{M}\to M$ into pseudo-arcs such that the decomposition space is homeomorphic to M and the decomposition elements are all terminal continua in \hat{M} , i.e., every subcontinuum of \hat{M} either is contained in a single decomposition element or is a union of decomposition elements. More generally, let \hat{N} be a compactum that has an upper semi-continuous decomposition φ into indecomposable chainable continua such that the decomposition elements are all terminal, and let N be the decomposition space. Moreover, if each proper subcontinuum of N is decomposable, then for any homeomorphism $\hat{h}:\hat{N}\to\hat{N}$ there is a homeomorphism $h:N\to N$ such that $\varphi\cdot\hat{h}=h\cdot\varphi$. By Corollary 3.3, \hat{N} admits no expansive homeomorphism. The typical continua are solenoids of pseudo-arcs and hence they admit no expansive homeomorphisms.

Problem 3.6. Does there exist an indecomposable plane circle-like continuum which admits an expansive homeomorphism? In particular, does the pseudo-circle admit an expansive homeomorphism?

Problem 3.7. Does there exist a hereditarily indecomposable continuum which admits an expansive homeomorphism?

The author wishes to thank the referee for very helpful suggestions and comments, in particular, the proof of Proposition 2.6.

References

- E. Akin, The General Topology of Dynamical Systems, Amer. Math. Soc., Providence, 1993. MR 94f:58041
- N. Aoki, Topological dynamics, in: Topics in general topology (eds, K. Morita and J. Nagata), North-Holland, Amsterdam, (1989), 625-740. MR 91m:58120
- R. H. Bing, A homogeneous indecomposable plane continuum, Duke Math. J., 15 (1948), 729-742. MR 10:261a
- R. H. Bing, Concerning hereditarily indecomposable continua, Pacific J. Math., 1 (1951), 43-51. MR 13:265b
- C. E. Burgess, Chainable continua and indecomposability, Pacific J. Math., 9 (1959), 653-659.
 MR 22:1867
- L. Fearnley, Characterizations of the continuous images of the pseudo-arc, Trans. Amer. Math. Soc., 111 (1964), 380-399. MR 29:596
- H. Kato, Expansive homeomorphisms in continuum theory, Topology Appl., 45 (1992), 223-243. MR 93j:54023
- ,Continuum-wise expansive homeomorphisms, Canad. J. Math., 45 (1993), 576-598.
 MR 94k:54065
- 9. _____, Chaotic continua of (continuum-wise) expansive homeomorphisms and chaos in the sense of Li and Yorke, Fund. Math., 145 (1994), 261-279. MR 95i:54049
- _____, The nonexistence of expansive homeomorphisms of chainable continua, Fund. Math., 149 (1996), 119-126. CMP 96:09
- 11. _____, Chaos of continuum-wise expansive homeomorphisms and dynamical properties of sensitive maps of graphs, *Pacific J. Math.*, 175 (1996), 93–116. CMP 97:04
- Minimal sets and chaos in the sense of Devaney on continuum-wise expansive homeomorphisms, Lecture Notes in Pure and Applied Mathematics, 170 (1995), 265-274. MR 96c:54065
- 13. J. Kennedy, The construction of chaotic homeomorphisms on chainable continua, Topology Appl., 43 (1992), 91-116. MR **93b**:54040
- 14. A. Lelek, On weakly chainable continua, Fund. Math., 51 (1962), 271-282. MR 26:742
- W. Lewis, Most maps of the pseudo-arc are homeomorphisms, Proc. Amer. Math. Soc., 91 (1984), 147-154. MR 85g:54025
- 16. W. Lewis, Continuous curves of pseudo-arcs, $Houston\ J.\ Math.,\ 11\ (1985),\ 91-99.$ MR ${\bf 86e}{:}54038$
- 17. J. Mioduszewski, On a quasi-ordering in the class of continuous mappings of the closed interval onto itself, *Collog. Math.*, 9 (1962), 233-240. MR **26:**741
- S. B. Nadler, Jr., Hyperspaces of sets, Pure and Appl. Math., 49 (Dekker, New York, 1978).
 MR 58:18330
- L. G. Oversteegen and E. D. Tymchatyn, On span and weakly chainable continua, Fund. Math., 122 (1984), 159-174. MR 85m:54034
- $20.\ \ \text{W. Utz, Unstable homeomorphisms, } \textit{Proc. Amer. Math. Soc.}, 1\ (1950), 769-774.\ \ \text{MR}\ \textbf{12:}344b$
- R. F. Williams, A note on unstable homeomorphisms, Proc. Amer. Math. Soc., 6 (1955), 308-309. MR 16:846d

Institute of Mathematics, University of Tsukuba, Ibaraki 305, Japan E-mail address: hisakato@sakura.cc.tsukuba.ac.jp